Mixed-Mode Dynamic Crack Growth in Functionally Graded Glass-Filled Epoxy
نویسنده
چکیده
Compositionally graded glass-filled epoxy sheets with edge cracks initially along the gradient are studied under dynamic loading conditions. Specimens with monotonically varying volume fraction of reinforcement are subjected to mixed-mode loading by eccentric impact relative to the crack plane. The optical method of Coherent Gradient Sensing and high-speed photography are used to map transient crack tip deformations before and after crack initiation. Two configurations, one with a crack on the stiffer side of a graded sheet and the second with a crack on the compliant side, are examined experimentally. To elucidate the differences in fracture behavior due to functional grading, a homogeneous sample is also tested. The differences in both preand post-crack initiation behaviors are observed in terms of crack initiation time, crack path, crack speed and stress intensity factor histories. When a crack is situated on the compliant side of the sample, it kinks significantly less compared to when it is on the stiffer side. Crack tip mode mixity histories show small but positive values during crack growth from the stiffer side of the sample towards the compliant side whereas a small but negative mode mixity prevails for the opposite configuration.
منابع مشابه
Mixed Mode Crack Propagation of Zirconia/Nickel Functionally Graded Materials
Zirconia-nickel functionally graded materials were obtained by powder metallurgy technique. The microstructure, residual stress, fracture toughness and Vickers hardness were investigated. Mixed-mode fracture response of YSZ /Ni functionally graded materials was examined utilizing the three point bending test and finite element method (Cosmos/M 2.7). The results show that the stress intensity fac...
متن کاملMixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...
متن کاملInfluence of elastic variations on crack initiation in functionally graded glass-filled epoxy
Crack tip deformations and fracture parameters in functionally graded glass-filled epoxy beams are experimentally evaluated under static and dynamic loading conditions. Beams with unidirectional, monotonic elastic gradients and cracks along the gradient are examined. SEN samples with increasing or decreasing Young’s modulus ahead of the crack tip are studied in symmetric four-point bending and ...
متن کاملNumerical Investigation of the Mixed-Mode Stress Intensity Factors in FGMs Considering the Effect of Graded Poisson’s Ratio
In this paper, the interface crack of two non-homogenous functionally graded materials is studied. Subsequently, with employing the displacement method for fracture of mixed-mode stress intensity factors, the continuous variation of material properties are calculated. In this investigation, the displacements are derived with employing of the functional graded material programming and analysis o...
متن کاملEvaluation of crack tip fields and stress intensity factors in functionally graded elastic materials: Cracks parallel to elastic gradient
Particulate functionally graded materials (FGM) made of glass-filled epoxy with edge cracks parallel to the direction of the elastic gradient and subjected to pure bending have been studied. Crack tip measurements are used to examine continuum models for FGMs by treating the material as isotropic and nonhomogeneous at macroscales. Situations where cracks are located on the compliant and the sti...
متن کامل